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Today’s objectives

Introduce Oblivious RAM (ORAM)
Define ORAM Security

Construct non-trivial ORAM

Discuss how ORAM can be plugged into MPC
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GMW Protocol
Multi-party
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Multi-round
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Oblivious Transfer
Pseudorandom functions/encryption
Commitments
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A dream objective: Express protocol intent as a regular program

// functionality.c

int main (int argc,
char** argv) {

}



// functionality.c

. Compile
int main (int argc, ﬁ _
char** argv) {




// functionality.c

int main (int argc,

char** argv) {




// functionality.c

int main (int argc,
char** argv) {

// functionality.asm

ADD r13 #3
MOV r15 r20
STORE
GOTO
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// functionality.c

int main (int argc,
char** argv) {

// functionality.asm

ADD r13 #3
MOV r15 r20
STORE
GOTO
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n. size of the main memory

w: size of each memory element; word size
// functionality.c

int main (int argc,

-

char** argv) {

// functionality.asm

ADD r13 #3

MOV r15 r20
STORE
GOTO

-
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n. size of the main memory

w: size of each memory element; word size
// functionality.c

int main (int argc,

-

char** argv) {

// functionality.asm

- - ADD r13 #3
Th|§ yvorks, but s MOV 115 190 «
prohibitively expensive STORE

because of the cost of GOTO
memory access:

O(w - n) gates per access
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Main Memory

14



Main Memory

Oblivious RAM Protocol

Today
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Oblivious RAM (ORAM)

L) Software Protection and Simulation on Oblivious RAMs
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| |
Soflware protection s ore of the most important ssues concerning compier practice. There exist
many heunsties and ad-noe methads for protection, but the prohlem as a4 whaole has niv received the
theorctical treatment il deserves. In this paper, we provide theoretical treatment of softwyre

protecthion. We reduce the prohlem of coftware pratection ta the problem of efficient simulatian on
oblvious RAM

A machine K abliious f the sequence in which it accesses memory ecalions is equivalent for any u
o mpats with the same ronming (ime. For example, an obbwvious Turning Machine is one tar which
the movement of the heads on the 1apesas 'dentical tor each computation. (Thus, the movement s S ( ’C u r( , O u S O u rC ( , I S a a aS( ;
indeperdent ¢f the actaal mpot.) What is the dowdown in the rinning time af o machine 5f 1t i

required 1o be ohlimous? In 1479, Pippenger and Fischer showed how @ twostape odhivons Turing
Maching can simulate, on-line, 3 cne-tape Turing Machine, with a loganthmic dowdown in the

running time. We show an analogous result {for the random access machine (RAM) maode! of
computation. In particclar, we show how to do an on-line simulation of an arbitrary RAM by & l I l I V
probabilistic sbliviens RAM with a paylogarithmic slowdown in the running time. Or the other hand.

we show that a logarithmic slyadown is a lower bound.

Categonies and Subjec) Descriptars: C2 (1 |[Computer-Communicatinon Netwnrks]: General—securin
ard protection: B3 |Data Encryption]: F 1.1 |Cempuatation hy Abstract Devices|: Mocels of
Computation-—haunded-action devices

Geeneral Terms: Security, Theary

Additional Koy Words and Prrasest Pscugorandom funcoens, simulation of random access machines.
SQIIWare protection
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Abstract
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Oblivious RAM (ORAM)

A protocol allowing a client to
securely outsource its database
to an untrusted server

ORAM is its own research
area with a large (and
growing) body of work
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Server S Client C

Powerful (i.e. has lots of memory) Weak (has only enough space

for a few memory elements)
Untrusted (semi-honest)

| Wishes to repeatedly access Its
Has no input outsourced database
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(Logical) Memory
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(Logical) Memory
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(Logical) Memory
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Basic idea: For each logical access,

the client asks for multiple physical
elements from the server
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ORAM Security:

For a sequence of requests &
from the client, the view of the
server can be simulated
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Step 1:
Encrypt RAM content
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Step 1:
Encrypt RAM content

¢

C

We will omit this from now on.
Assume all elements are encrypted.







Trivial ORAM
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Trivial ORAM
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Trivial ORAM

e




Trivial ORAM

S




Trivial ORAM

-
.
N
N
A\
+Y
\
\
A
| S
1
y
y
y
4
y
...
4
\\
y
-~ d d
&
S ol

SEEaEaan



O

SEEE

GQ

Q

Trivial ORAM
=
ﬁ

e

-
\
A
N
y
\
\
A
)
]
!
y
y
y
y
y
/
-\H
i
t\V\

SEEE



Trivial ORAM
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Trivial ORAM
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Trivial ORAM
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On each access, one-by-
one stream database

elements to
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Trivial ORAM

Client needs only O(1) space J
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On each access, one-by-
one stream database

elements to
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Trivial ORAM

Client needs only O(1) space J

H Server is easy to simulate J @
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On each access, one-by-
one stream database

elements to
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Trivial ORAM

Client needs only O(1) space J

Server Is easy to simulate J @
Linear overhead x

On each access, one-by-
one stream database

elements to
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Non-Trivial ORAM

For each logical access,
server needs to send only

o(n) elements
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Non-Trivial ORAM

For each logical access,
server needs to send only

o(n) elements
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Intuition: Client continually shuffles
physical memory elements around

e
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Non-Trivial ORAM

For each logical access,
server needs to send only

o(n) elements

Intuition: Client continually shuffles
physical memory elements around

Problem: Client cannot store enough
memory elements to shuffle them

48




SOI'ting network A 9 languages v

Article Talk Read Edit View history

From Wikipedia, the free encyclopedia

In computer science, comparator networks are abstract devices built up of a fixed number of

"wires", carrying values, and comparator modules that connect pairs of wires, swapping the values on

the wires if they are not in a desired order. Such networks are typically designed to perform sorting on

fixed numbers of values, in which case they are called sorting networks. I I

Sorting networks differ from general comparison sorts in that they are not capable of handling l ‘ I
arbitrarily large inputs, and in that their sequence of comparisons is set in advance, regardless of the
outcome of previous comparisons. In order to sort larger amounts of inputs, new sorting networks l

must be constructed. This independence of comparison sequences is useful for parallel execution

and for implementation in hardware. Despite the simplicity of sorting nets, their theory is surprisingly

deep and complex. Sorting networks were first studied circa 1954 by Armstrong, Nelson and A simple sorting network consisting of four wires
O'Connor,'") who subsequently patented the idea.'”’ it

&

Sorting networks can be implemented either in hardware or in software. Donald Knuth describes how

the comparators for binary integers can be implemented as simple, three-state electronic devices.!"! Batcher, in 1968, suggested using them to construct
switching networks for computer hardware, replacing both buses and the faster, but more expensive, crossbar switches.”® Since the 2000s, sorting nets
(especially bitonic mergesort) are used by the GPGPU community for constructing sorting algorithms to run on graphics processing units.!]



Batcher odd—even mergesort

Article Talk

From Wikipedia, the free encyclopedia

Batcher's odd—even mergesort'' is a generic construction devised by Ken Batcher for
sorting networks of size O(n (log n)?) and depth O((log n)?), where n is the number of items
to be sorted. Although it is not asymptotically optimal, Knuth concluded in 1998, with respect
to the AKS network that "Batcher's method is much better, unless n exceeds the total
memory capacity of all computers on earth!"!

It is popularized by the second GPU Gems book,'®! as an easy way of doing reasonably
efficient sorts on graphics-processing hardware.

Pseudocode |edit)

Various recursive and iterative schemes are possible to calculate the indices of the elements
to be compared and sorted. This is one iterative technique to generate the indices for sorting
n elements:

# note: the input sequence is indexed from @ to (n-1)
forp=1, 2, 4, 8, ... #as longas p<n
for k = p, p/2, p/4, p/8, ... # as long as k >= 1
for j = mod(k,p) to (n-1-k) with a step size of 2k
for i = @ to k-1 with a step size of 1
if floor((i+j) / (px2)) == floor((i+j+k) / (px2))
compare and sort elements (i+j) and (i+j+k)

Non-recursive calculation of the partner node index is also possible.'*!

XA 4 languages v

Read Edit View history

Batcher odd-even mergesort

Visualization of the odd—even mergesort network with eight inputs

Class Sorting algorithm

Data structure Array

Worst-case performance O(log® (n)) parallel time
Best-case performance O(log® (n)) parallel time
Average performance O(log® (n)) parallel time

Worst-case space complexity O(n log2(n)) non-parallel time



Pseudorandom Function (PRF)

A function family I is considered pseudorandom if
the following indistinguishability holds

Ideal:
Real: T < EmptyMap
k& (0.1} .
p— Lookup(m):
Lookup(m): if megT:
return F(k,m) Tim] < {0,1)°u

return T([m]

“I" looks random”
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How to shuffle

I

C samples a
PRF key kg

C
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Square Root ORAM (Ostrovsky '92)

Main idea: Shuffle all of RAM, but only roughly every ﬁ aCCeSSes



Square Root ORAM (Ostrovsky '92)
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* Oblivious Sort

Elements are sorted according to F(kq, 1)



* Oblivious Sort

F(K,2) F(K,dl) F(K.,5) F(K.8) F(K.d2) F(K.,4) F(K.7) F(K.3) F(K,d0) F(K,dl) F(K,d0) F(K,,d6)

Elements are sorted according to F'(kg, - )

C then tags each element x with F(kg, x)



F(K,)2) F(KK,dl) F(K,5) FK,8) F(KK,d2) FK,24) FK,7) FK.)3) FK,d0) F(K,dl) FK,d0) F(K,,d6)
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F(K,2) F(K,dl) FK,5 F(K,8) F(K,d2) FK,2) FK,) FK,3) F(K,d0) F(K,dl) F(K,d0) F(K, d6)

F(K.T)

_

access(7)
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F(K,2) F(K,dl) FK,5 F(K,8) F(K,d2) FK,2) FK,) FK,3) F(K,d0) F(K,dl) F(K,d0) F(K, d6)

access(7)
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F(K,)2) F(KK,dl) F(K,5) FK,8) F(KK,d2) FK,24) FK,7) FK.)3) FK,d0) F(K,dl) FK,d0) F(K,,d6)

access(7)



F(K,)2) F(K.,dl) F(K,5) FK,8) F(K,d2) FK.24) FK,) FK.)3) FK,d0) F(K,dl) FK,d0) F(K,,d6)

. Main Storage

Stash




F(K,)2) F(KK,dl) F(K,5) FK,8) F(KK,d2) FK,24) FK,7) FK.)3) FK,d0) F(K,dl) FK,d0) F(K,,d6)

access(5)
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g O-0 0 -uun

F(K,2) F(K,,dl) F(K,5) FK,8) F(K,d2) FK,4) F(K.,7) FK,3) F(K,,dO) F(K,dl) F(K.,dO) F(K,,db6)
[Z]
4‘ 4‘ F(K,, dO)

_

access(7)
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g O-H0 = Hun

F(K,2) F(K,dl) FK,5 F(K,8) F(K,d2) FK,2) FK,) FK,3) F(K,d0) F(K,dl) F(K,d0) F(K, d6)
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g O-H0 = Hun

F(K,2) F(K,dl) FK,5 F(K,8) F(K,d2) FK,2) FK,) FK,3) F(K,d0) F(K,dl) F(K,d0) F(K, d6)
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g O-H0 = Hun

F(K,2) F(K,dl) FK,5 F(K,8) F(K,d2) FK,2) FK,) FK,3) F(K,d0) F(K,dl) F(K,d0) F(K, d6)

\—Y-’ The stash continues to grow with each
access, and we linearly scan the stash.
0, \/N

When stash has square root size, we
reset! (Reshuffle everything)
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* Oblivious Sort
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* Oblivious Sort







Square Root ORAM (Ostrovsky '92)

Main idea: Shuffle all of RAM, but only roughly every \/; aCcCesses

Client shuffles via a sorting network (and by choosing ordering with a PRF key)

On each access, linearly scan the stash

If the element is not in the stash, client directly asks for
element from main storage

Otherwise, client asks for a dummy from main storage

Every 0(\5) accesses, reshuffle to keep the stash size in check



Square Root ORAM (Ostrovsky '92)

Security: on each access, server linearly scans stash, sees a request for a
uniformly random element (without replacement) from main storage

Efficiency: Roughly ﬁ physical accesses per logical access
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ABSTRACT

Trad:tional apprcaches to generic secure computation begin
by representing the function [ being computed as a circuit,
If F Cepends oo cach of its iaput bits, this moples a protocol
with complexity at least linear in the input size. In fact, lin-
cor running time s tnherent for non trivial furctions since
each parly must “wouch” every Lot of thei: onput lest _nfur-
mation abou: the other party's Input be leakec. This seems
to rule out many applications of seeure computation (e.g.,
dacabase search) in scenarios where inpuls are hage.

Adapting and extending an idea of Ostrowvscy and Shonp,
we present an approach to secure two party computation
that yields protocols running in sullinear time, in an amar-
tizad sense, ‘or functions that ean he ecomprted in sublin.
ear time on a random access machine (RAM). Moreover,
each party is required to maintan state that is oaly (es-
sentially) linear in its own inpns sive. Our pratecal applies
generic secure two-party computation on top of oblwious
RAM [ORAM). We present an optimized version of our
protocal nsing Yan's garhled-cirevit spproach and a recent
ORAM construction of Shi et al.

We describe an implementation of this protocol, and eval-
naze its performance ‘or the task of obliviously searching a
database with cver 1 million entriss. Because of the cost
of our basic steps, our solution is slower than Yeao on small
inputs. However, our implementation outperforms Yao al-
ready on DB sizee of 2'® entriee (a quite small DB by today’s
standerds).

1. INTRODUCTION
Consider the task of searching over a sorted database cf n

Permission to meke digital or hard copics of al or part of this work for
personal or classroom ase is granted without fee provided that copics arc
nct made or distributed for profit or commercizl advantage and that cooics
bear this notice and the full Gtation on the fizst page. Te copy otherwise, to
repablish, to post on servers or to redistribute to lists, requites prior speeific
permission and/or a fee,

CCS'12, October 16-18, 2012, Ralcigh, North Cacclina, USA.

Copyright 2012 ACM 978-1-4503-1651-4/12/1D ., .515.00.

items. Using binary search, tkis can be cone in time O(log n).
Now consider a sacure version of this task where a client
wishes to learn whether an item is in a database held by
a server, with neither party learning anyvthing more. Ap-
plying generic secure computation [22, 5] to this task, we
would begin by expressing the computation as a (binary or
ar‘thmetic) circuit of size &t least n, resulting in a protocol
of complexity [i(r). Moreover, (2t least) hnsar complexity
is inhereni: in any secure protocol for a non-trivial function
Lo server st “louch” every bit of the database; other wise,
tae server can learn some information sbout the chent's -
put by observing which portions of its database were never
avsessed.

T'his hinear lower bound seems to rule out the possibility of
ever performing practical secure computation over very large
datasets. Howewer, tracing the sources of the nefliciency,
one may notice two opportunities for improvement:

o Many interesting furctions (such s binary search) can
be computec in sublmear time on a random-access ma-
caine (RAM). Thus. it would be nice to have proto-
eols for generic secure compusation thal use RAMs —
rather than cireuts — as ther starting point.

o The fact that I'near work is inherent. for secuire compni-
tation of any nen-trivial function f only apblies when
f i= computed once. [Jowever, it does not rule ou: the
pessthility of doing better, in an amartized sense, when
the parties compute the same lunction mulfiple times.

Inapired hy the shove, we explore scenarins where secure
computation with sublinecar amortized weork s possibla. \We
focus on a setting where a clien: and server repeatedly eval-
mata & fuaction f, maintzining state acrss these execntions,
with the server’s 'huge| input D) changing only a little be-
tween execations, and the client's (small! input x chasen
anew each time f s evaloated (It is usefn’ to keep in
mind the concrete application of a client making saveral
read/write requests to a large database D, though our re-
sults are more general.) Our main result is:

TAECREM 1. Suppose f can be computed in time t and
spare s in the RAM wmodel of romputation Then there i a
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Today’s objectives

Introduce Oblivious RAM (ORAM)
Define ORAM Security

Construct non-trivial ORAM

Discuss how ORAM can be plugged into MPC



